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Summary

Fibre composites are steadily becoming more and more popular both in
industry and science. This progress is unvarying for decades. The call
for optimization and tailoring of the properties of the fibre composites
is still clamorous and the author of the lecture is going to present his
humble contribution to this field of knowledge.

The lecture is, as was already said, devoted to an optimization,
namely to the stiffness maximization, of fibre composites. The fibre
composite is a composite composed of a fibre (or fibres) and matrix (or
matrices). The point is that the fibre can be oriented or even bent and
twisted in a suitable way.

The lecture starts with a definition of the measure of stiffness as a
quantity to be maximized. Then there is excursion into the stiffness
maximization of thin plates. In the following, the emphasis is on curved
fibres and structures; as the curved shapes are more natural for fibre
composites. There arise the necessity to use the curvilinear tensor cal-
culus. For the consistence of the used symbology the section shortly
describing tensor calculus is placed at the begining of the lecture. The
implementation of the tensor calculus into the problems of fibre com-
posite stiffness maximization is demonstrated on stiffness maximization
of a thick walled elliptic tube. The lecture is concluded with views on
the future research that is based on the free fibre composite optimiza-
tion.
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Souhrn

Vláknové kompozity jsou stále obĺıbeněǰśı a to jak v pr̊umyslu tak ve
vědě. To trvá již několik desetilet́ı a požadavek optimalizace a úpravy
vlastnost́ı vláknových kompozit̊u podle konkrétńıch nárok̊u je stálý. V
této přednášce je představen př́ıspěvek k této problematice.

Přednáška je, jak bylo konečně již řečeno, věnována optimalizaci.
Jmenovitě, maximalizaci tuhosti vláknových kompozit̊u. Vláknový kom-
pozit je kompozit složený z vlákna (či vláken) a matrice (př́ıpadně
matric). Důležité pro optimalizaci je, že vlákna mohou být vhodně
orientována či ohnuta.

Přednáška zač́ıná definićı mı́ry tuhosti a jej́ı formulaćı jako maxi-
malizované veličiny. Dále pokračuje popisem maximalizace tuhosti
tenkých laminátových desek. V následuj́ıćım je d̊uraz kladen na kon-
strukce s křivými vlákny. Zde se již neobejdeme bez (křivočarého)
tenzorového počtu. Vzhledem k udržeńı jednotného značeńı v celé
přednášce je stručný popis zásad tenzorového počtu umı́stěn téměř na
samém počátku přednášky. Použit́ı tenzorového počtu v problémech
maximalizace tuhosti vláknových kompozit̊u je představeno na silnostěnné
eliptické trubce. Přednáška je zakončena krátkým výhledem do bu-
doućıho výzkumu, který je založen na optimalizaci kompozit̊u s volným
vláknem.

3



Keywords : fibre, laminate, composite, optimization, maximization,
stiffness
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1 Introduction

At this lecture on stiffness maximization the author would like to
present a method to optimize, in a way, fibre composites. It is well
known that to optimize something without specifying the aim of the
optimization is meaningless. To avoid this let us state the aim first.
We want to maximize stiffness. There might be a good reason in this,
but the reason is always subject to an individual (or individuals) in
the problem involved. Another good aim (or object) could be the con-
dition of constant stress state in the construction. To cheer us up we
may say that results of optimization with respect to these respective
objects generally leads to the same design.1

As the results are (if possible) the same and the formulation of the
problem is much easier at the case of stiffness maximization, the author
have decided to pursue the stiffness maximization problem.

2 Stiffness maximization

Let us start with a one-dimensional spring, Fig. 1, and look at the
connection of a force, displacement, stiffness and work done by external
forces.

u

F

Figure 1: The spring

For a given force, F , both the displacement

u =
F

k
1[All02]
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and the work done

W = Fu =
F 2

k
is inversely proportional to the stiffness constant, k. Thus, regarding
the force F as a given constant, we have the equivalence of the problem
to maximize stiffness and to minimize the work done by external forces

arg max k = arg minFu.

Accordingly, we can formulate the problem to maximize stifness as

min(f, û),

where (., .) stands for the inner product, f for external forces and û for
the displacement in the state of an elastic equilibrium, i.e., a solution
to the Navier-Cauchy equations

Aû = f (1)

as well as a minimizer of the total potential energy:

Π(û) = min
u∈U

Π(u), Π =
1
2

(Au, u)− (f, u), (2)

U being a set of the statically admissible displacements. Combining
(1) stated in the form

(Aû, û) = (f, û)

with (2) yields

Π(û) =
1
2

(Aû, û)− (f, û) = −1
2

(f, û),

which means that the solution of the stiffness maximization problem
fulfil the following (α being design parameters)2

α̂ = arg min
α

(f, û) = arg max
α

Π(û),

i.e.
α̂ = arg max

α
min
u∈U

Π.

To incorporate constraints, g = 0, constituting the set U and a set
A, of design possibilities, we can build up Lagrangian L = Π + λg and
write down necessary conditions of the extreme:

δL

δu
= 0,

2[Ben95]
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δL

δα
= 0.

These equations are generally nonlinear and not easy to solve. To
solve these equations there is a method called alternating fulfilment of
necessary conditions based on the following algorithm:

1) Deliberately choose the design variables, α0

2) Using αk solve the elasticity problem,
δL

δu
= 0⇒ uk

3) Using uk solve the optimum condition,
δL

δα
= 0⇒ αk+1

4) If αk = αk+1 you have a solution, otherwise goto item 2)

Unfortunately, this approach does not always converge, but some-
what lengthy manipulation3 leads to another formulation of the prob-
lem

α̂ = arg min
α

min
σ∈C

1
2

∫
Ω

Cabcdσ
abσcd dΩ,

where C is a set of statically admissible stresses, that is valid only
at the case of homogeneous kinematic boundary conditions, but with
much better convergence properties.4

The last expression is written in the index notation of tensor calcu-
lus, a tool necessary to solve geometrically more complicated problems.
As it is we should spend at least a few words on the curvilinear elastic-
ity, i.e., the theory of elasticity written in the language of (curvilinear)
tensor calculus.

3 Curvilinear elasticity

To solve real life problems we certainly must take into account curved
shapes and curvilinear elasticity. First, the elasticity. Elasticity is a
branch of physics which studies the properties of materials that are de-
formed under stress (or, say, external forces), but then, when the stress
is removed, return to its original shape. The amount of deformation is
specified with strain.5 The concept of elasticity is build on the classical
works of Sir William Petty (London, 1674) and Robert Hooke
(London, 1678/1660), and the state of an elastic body is characterized
via stress and strain tensors.6 As it is, we must take a glance on the

3[Mar06]
4[All02]
5[Cau27]
6[Lov27]
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tesor calculus7 and its most important tensor – the metric tensor,

gab =
∂θ

∂ξa
· ∂θ
∂ξb

,

θ being the radius vector of a point of the elastic body and ξa a curvi-
linear coordinate system.8 The contravariant metric tensor is defined
as9

gab = (gab)−1 (3)

and the derivative of a vector as (gggb = ∂θ
∂ξb

being a vector base)

∂aaa

∂xa
= ∇aabgggb,

with covariant derivative

∇aab = ∂aa
b + Γbaca

c,

where the Christoffel symbols of the second kind

Γdab = gdc
1
2

(∂bgac + ∂agcb − ∂cgab), ∂a =
∂

∂xa
.

The well known differential operators are expressed as10

gradϕ = ∇aϕggga = ∂aϕggg
a, divvvv = ∇vvv = ∇ava,

rotAAA = ∇×AAA = εabc∇aAb gggc, ∇2ϕ = div gradϕ.

Let us state the definition of the Green-Lagrange-St. Venant strain11

ξ

Eab=
1
2

(
ξ
gab −

o
gab),

where
ξ
gab is a metric of the material coordinate system coincident be-

fore the deformation with the space coordinate system
o
gab.

For small deformations the Green-Lagrange-St. Venant strain takes
the form of the small strain tensor12

εab=
1
2

(
ξ
gab −

o
gab)

∣∣∣∣
lin.

=
1
2

(∇aub +∇bua).

7[SS78], [LR89] and [Cia05]
8[GZ54]
9[SS78], [LR89]

10[LR89], [GZ54], [Wal84], [Wan05]
11[Ant05], [GZ54], [Cia05]
12[Lov27], [Was75], [Wal84]
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It became commonly known and used13 that the real state of a
deformed body, ûa, minimizes the total potential energy

Π(ua) = a(ua)− l(ua)

on a set of the admissible states, U, where the elastic strain energy

a(ua) =
1
2

∫
Ω

Eabcdεab(ua)εcd(ua)dΩ

and the potential energy of the applied forces

−l(ua) = −
∫
Ω

pauadΩ−
∫
∂tΩ

tauadΓ.

Shortly, it holds
ûa = arg min

ub∈U
Π(uc).

ν1

ν2

before deformation

ν3

after deformation

∝ ε1
1

∝
ε
1
3

2

∝
ε1 2 2

loaded with

σ11

in the direction of
axis

Figure 2: Orthotropic block

In the case of orthotropic material, for example orthotropic elemen-
tary block (signed as νth block, as outlined in Figure 2) we may choose

13[Mik64], [Was75], [LR89], [Dac89], [Che00]. The origin of these principles is
joined with such names as Maupertuis, 1746, Euler, 1744, and Lagrange, 1788.
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the coordinate system, νa, called the principal material frame. The
principal stands for alined with the principal material axes of the or-
thotropic material. Then the elasticity tensor has the following entries,{ ν

Eabcd
}
abdcd

=



Φ11 0 0 0 Φ12 0 0 0 Φ13

0 G12 0 G12 0 0 0 0 0
0 0 G13 0 0 0 G13 0 0
0 G12 0 G12 0 0 0 0 0

Φ21 0 0 0 Φ22 0 0 0 Φ23

0 0 0 0 0 G23 0 G23 0
0 0 G13 0 0 0 G13 0 0
0 0 0 0 0 G23 0 G23 0

Φ31 0 0 0 Φ32 0 0 0 Φ33


where

Φ11 =
1− ν23ν32

N
E1, Φ12 =

ν21 + ν23ν31

N
E1,

Φ13 =
ν31 + ν32ν21

N
E1, Φ21 =

ν12 + ν13ν32

N
E2,

Φ22 =
1− ν13ν31

N
E2, Φ23 =

ν32 + ν31ν12

N
E2,

Φ31 =
ν13 + ν12ν23

N
E3, Φ32 =

ν23 + ν21ν13

N
E3,

Φ33 =
1− ν12ν21

N
E3,

and

N = 1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν13ν32ν21,

where Ek and νkl are the appropriate Young’s moduluses and Poisson
ratios, respectively.

The above relations may be readily used in a very large variety of
anisotropic materials via the concept of locally orthotropic material.

The concept of locally orthotropic material is based on the thought
that at every point of a material it is possible to construct a cartesian
coordinate system νa such that the material in (infinitesimal) surround-
ing behaves orthotropically, i.e., the mentioned relations hold.
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Thus we only need to perform a transformation from the principal
frame of orthotropy, νa, into a frame of the computation. It must be
said that in the frame of the computation, the tensor entries are not
necessarily physical quantities.14

4 The simplest (illustrating) problem of fi-
bre composite stiffness maximization

x1

x2 = ν2

x3

ν1

ν3

Figure 3: Fibre composite

To illustrate the process of optimizing the fibre angle orientation,
that may be continually changing along the length of the fibre, let us
suppose the block from Fig. 3, tensioned with uniform stress, σ, in the
direction of the x1 axis, i.e., the stress tensor of the body is

σab =

 σ 0 0
0 0 0
0 0 0


which solves the step 2) of the algorithm. The material properties are
orthogonal with principal axes of orthotropy νa. In the coordinate
system νa the following relation of stress to strain holds

ν
εab=

ν

Cabcd
ν

σcd,

14[MD06], [Mar07a]
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where the compliance tensor{
ν

Cabcd

}
{abdcd}

=

=

0BBBBBBBBBBBBBBBBBBBBB@

1
E11

0 0 0 − ν21
E22

0 0 0 − ν31
E33

0 1
4G12

0 1
4G12

0 0 0 0 0

0 0 1
4G13

0 0 0 1
4G13

0 0

0 1
4G12

0 1
4G12

0 0 0 0 0

− ν12
E11

0 0 0 1
E22

0 0 0 − ν32
E33

0 0 0 0 0 1
4G23

0 1
4G23

0

0 0 1
4G13

0 0 0 1
4G13

0 0

0 0 0 0 0 1
4G23

0 1
4G23

0

− ν13
E11

0 0 0 − ν23
E22

0 0 0 1
E33

1CCCCCCCCCCCCCCCCCCCCCA

.

The ν above the tensor symbol indicates that the symbol does not
symbolize an abstract tensor but that it stands for the tensor compo-
nents in the ν-frame of reference and {ijdkl} indicates how the entries
are stored in the array, namely that the rows belong successively to the
following pairs of indices (ij = 11, 12, 13, 21, 22, 23, 31, 32, 33) and the
columns to the couples (kl = 11, 12, . . . , 33).

But now, in the x coordinate system, the stiffness maximization
problem of ours may be written

min
α

∫
V

cdV,

where

c =
x

σab
x

Cabcd
x

σcd= σ
x

C1111 σ.

Using the transformation rule

x

Cabcd=
∂νi

∂xa
∂νj

∂xb
∂νk

∂xc
∂νl

∂xd

ν

Cijkl,

i.e.,
x

C1111=
∂νi

∂x1

∂νj

∂x1

∂νk

∂x1

∂νl

∂x1

ν

Cijkl,

x

C1111=
(

cos2 α 0 cosα sinα 0 0 0 sinα cosα 0 sin2 α
)
×

13



×
{

ν

Cabcd

}
{abdcd}



cos2 α
0

cosα sinα
0
0
0

sinα cosα
0

sin2 α


,

α being the angle contained between axes x1 and ν1. Thus,

c = σ2

(
cos4 α

1
E11

+ cos2 α sin2 α

(
1
G13
− ν31

E11
− ν13

E33

)
+ sin4 α

1
E33

)
.

The necessary condition
∂c

∂α
= 0

reads
cos3 α sinαA1 + cosα sin3 αA2 = 0,

with
A1 =

1
G13
− ν31

E11
− ν13

E33
− 2
E11

and
A2 =

2
E22

+
ν31

E11
+
ν13

E33
− 1
G13

.

The last condition permits the following solutions:

1) α̂1 = ±π2 with c1 = σ2

E33

2) α̂2 = 0, π with c2 = σ2

E11

3) α̂3,4 = arctan
(
±
√
−A1
A2

)
.

Which one of the solutions of necessary conditions is solution of the
stiffness maximization problem depends on numerical values of the ma-
terial characteristics and should be decided from the numerical values
of the object function c.15

So much about the philosophy of the solving procedure. Now, let
us look on more practical problems.

15[Mar05]

14



5 Stiffness maximization of plates

Using the elasticity principles described above we can formulate the
problem of stiffness maximization at the case of laminated multilayer
Kirchhoff plates of symetric layout in symbolic form as16

1) The elasticity problem

P abcdwcd = qab

2) The necessary condition of optimum

wabwcdR
abcd(αν) = 0

where wab represents Fourier series expansion coefficients of the per-
pendicular displacement and Rabcd(αν) are functions of the design pa-
rameters, αν , standing for the layer orientation, see Fig. 4. The loading
is expanded into Fourier series with coefficients, qab.

There is only space for citing a few results of the described problem
in this lecture. The results of stiffness maximization of the laminate
plate are quoted in Figs 4 through 8 where there are descriptions of the
loading conditions in the caption of the figures and the optimal angles
of layer orientations in the figures (only one half of the symmetric plates
is depicted).17

x

y

α1

ν = 1

α1 = −45◦

ν = 2

α2 = 45◦

Figure 4: Square plate of four layers loaded by q = qo sin πx
a sin πy

b
(Permutation of layout is possible)

16[Mar04]
17[Mar06]
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x

y

α

ν = 1ν = 1 α1 = 0◦

ν = 2ν = 2 α2 = 0◦

ν = 3ν = 3 α3 = 0◦

Figure 5: Rectangular plate (1:2) of six layers loaded by q =
qo sin πx

a sin πy
b

x

y

α1

ν = 1

α1 = −45◦

ν = 2

α2 = 45◦

ν = 3

α3 = 45◦

Figure 6: Square plate of six layers loaded by q = qo sin 2πx
a sin 2πy

b (All
other layouts are possible as well)
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x

y

α

ν = 1ν = 1 α1 = −15◦

ν = 2ν = 2 α2 = 18◦

Figure 7: Rectangular plate (1:2) of four layers loaded by q = qoxy
(The inverse layout is equivalent)

x

y

α

ν = 1ν = 1 α1 = 14◦

ν = 2ν = 2 α2 = −20◦

ν = 3ν = 3 α3 = 14◦

Figure 8: Rectangular plate (1:2) of six layers loaded by q = qoxy (The
other layouts are equivalent)
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6 Stiffness maximization of thick-walled
anisotropic elliptic tube

At this chapter we are going to maximize the stiffness, by choosing
winding angle of the fibre, of a thick walled fibre wound, and thus
anisotropic, elliptic tube. The tube is optimized for three different
loadings. First, under a pulling force, F , see Fig. 9, distributed evenly
along the lower face. Second and third, with shearing forces T1 (a
force in the direction of the axis b1) and T2 (having direction of the
b2), respectively. Both of the last two forces are evenly distributed as
well. Following the scheme of the alternative fulfilment of necessary
condition method we must first perform the analysis.

6.1 The analysis

`

b1

b2

⊗
b3

t a

t
b

α

b1

b3

�
b2

F

Figure 9: The anisotropic elliptic tube
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In this subsection we focus on an analysis of a thick-walled elliptic
tube which is wound by a fiber embedded in a matrix (Fig. 9). The up-
per end of the tube is clamped and a uniformly distributed force, e.g. F
as indicated in the Fig., is applied on the lower end. The fiber is wound
at an angle, α, that is going to be optimized, in the sense of maximal
stiffness, in the subsequent sections. The analysis is performed using
the concept of locally orthotropic material, where the elasticity tensor
is expressed in a local Cartesian coordinate system aligned with the
principal directions of local orthotropy of the material. A system of co-
ordinate transformations from the local Cartesian coordinate systems
into a global coordinate system of computation is performed. The total
potential energy of the problem is expressed in the global coordinate
system. After approximating the dependent variables, representing the
displacements, by Fourier series, the total potential energy is mini-
mized.

In the way described elsewhere,18 the elastic energy is expressed as

a =
1
2
ATKA,

where A represents Fourier series coefficients and K a kind of the stiff-
ness matrix.

The work of the applied force (for the case of loading in accord with
the Fig. 9) may be expressed as

l = P′ ∗ A

with P being a known vector. The resulting displacements, ub, in the
global coordinate system, b, for the case of a given angle α, is obtained
relativelly easily and the deformed shape is demonstrated in Fig. 10.

6.2 Stiffness maximization

Applying the method of alternating fulfilment of necessary conditions
as described above leads to the necessity to solve two problems.

1. The problem of elasticity as already solved in the form

A = K−1P

2. The stiffness maximum condition,

∂Π
∂α

= 0,

18[Mar07b]
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b1

b2

⊗
b3

F

Figure 10: Deformation of the elliptic tube

i.e.,
1
2
AT

∂K

∂α
A = 0,

that represents, at the regarded case, one equation and we can
solve it numerically, e.g., using Bisection method.

At the last equation

∂K

∂α
=

`Z
0

2πZ
0

tZ
0

(B-Gam)’*
∂Ex

∂α
*(B-Gam)*sqrt(det(gx))d3x,

∂Ex

∂α
=

∂
x

Eabcd

∂α


abdcd

,

20



∂
x

Eabcd

∂α
=
(
αai
∂xb

∂νj
∂xc

∂νk
∂xd

∂νl
+
∂xa

∂νi
αbj
∂xc

∂νk
∂xd

∂νl
+

+
∂xa

∂νi
∂xb

∂νj
αck
∂xd

∂νl
+
∂xa

∂νi
∂xb

∂νj
∂xc

∂νk
αdl

) ν

Eijkl,

where

αab =
∂

∂α

[
∂xa

∂νb

]
=
∂xa

∂bc
∂bc

∂ξd
∂

∂α

[
∂ξd

∂νb

]
,

∂

∂α

[
∂ξd

∂νb

]
=

 0 0 0
0 − sinα − cosα
0 cosα − sinα

 .

The last equations are stated only as a demonstration of the sim-
plicity of the approach. For full understanding of the symbols, one
must look at more detailed description of the preceding analysis.19

6.3 Optimized winding angles

Using the above described procedure we arrive at the following results.
At the case of the pulling force, F3, the stiffness maximizing angle seems
to be 90◦. For the shearing force T1 the angle is 0◦ and for the shearing
force T2 it is ±45◦, see Fig. 11. Even at this simple one parametric
case, there is necessity at every step to choose the appropriate solution
of the equation from the second step of the algorithm (as there is more
than one solution of this equation.)

7 Concluding remarks

As the problem of the last section is a one-parametric one, and thus an
easy one, we can check the results by direct evaluation of the objective
function in a set of discrete points. It must be stated the computa-
tion time was similar at both cases. The results were essentially the
same. But, of course, the method of alternative fulfilment of the nec-
essary condition is of universal usage even at the case of multilayer
(multiparameter) problems. The pointwise method must be at such
a case substituted by another method, e.g., Genetic Algorithms. As
shown in the case of plates and tubes,20 such an approach costs much
more computation time and increase of uncertainty of the quality of
the solution.

19[Mar08]
20[Mar06]
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`

b1

b2

⊗
b3

t a

t
b

α

b1

b3

�
b2

For F3 αopt = 90◦

For T1 αopt = 0◦

For T2 αopt = 45◦

Figure 11: The optimum angle α for given loadings
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